DESTINI : A Novel Enzyme for Comprehensive Spatial Profiling of Metabolites and Proteins within Cellular Compartments

<u>Chang-Mo Yoo</u>,^a Chang-Ryul Choi,^a Min-Keun Lee,^a Ye Seop Park,^{c,d} Jeesoo Kim,^{b,e} Jong-Seo Kim,^{*b, e} Tae Hyeon Yoo,^{*c,d} and Hyun-Woo Rhee^{*a, b}

^a Department of Chemistry, Seoul National University, Seoul 08826, Korea. ^b School of Biological Sciences, Seoul National University, Seoul 08826, Korea. ^c Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea ^d Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea ^e Center for RNA Research, Institute of Basic Science, Seoul 08826, Korea E-mail: <u>ycm114@snu.ac.kr</u>, <u>rheehw@snu.ac.kr</u>*

The spatial distribution of biomolecules, such as metabolites, plays a critical role in understanding biological systems. However, conventional purification methods have limitations in providing a comprehensive map of these important biological components. To overcome this limitation, we have firstly developed a novel enzyme called DESTINI (desthiobiotin ligase) that enables the labeling of proximal proteins and metabolites with desthiobiotin (DTB; a sulfur-free biotin analog). Using DESTINI, we can effectively label nearby proteins and metabolites, and successfully detect DTB-labeled metabolites using mass spectrometry. This approach allows us to target DESTINI to different subcellular compartments, including the mitochondrial matrix, nucleus, cytosol, and ER, enabling us to obtain compartment-specific information about metabolites in living cells. Overall, DESTINI opens up new opportunities for identifying the spatial distribution of metabolomes as well as proteomes within the same cellular compartment using a single enzymatic labeling tool.