Engineering Sustainable Resources for CRISPR-based Diagnostics

Maturada Patchsung^{1,†}, Aimorn Homchan^{1,2,†}, Kanokpol Aphicho^{1,†}, Surased Suraritdechachai^{1,†}, Thanyapat Wanitchanon^{1,5}, Archiraya Pattama³, Khomkrit Sappakhaw¹, Piyachat Meesawat¹, Thanakrit Wongsatit¹, Artittaya Athipanyasilp^{1,3}, Krittapas Jantarug¹, Niracha Athipanyasilp³, Juthamas Buahom³, Supapat Visanpattanasin², Nootaree Niljianskul⁴, Pimchai Chaiyen¹, Ruchanok Tinikul², Nuanjun Wichukchinda⁵, Surakameth Mahasirimongkol⁵, Rujipas Sirijatuphat⁶, Nasikarn Angkasekwinai⁶, Michael A. Crone^{7,8,9}, Paul S. Freemont^{7,8,9}, Julia Joung^{10,11,12,13,14}, Alim Ladha^{10,11,12,13,14}, Omar Abudayyeh¹², Jonathan Gootenberg¹², Feng Zhang^{10,11,12,13,14}, Claire Chewapreecha^{15,16}, Sittinan Chanarat², Navin Horthongkham^{3,*}, Danaya Pakotiprapha^{2,*}, <u>Chayasith Uttamapinant^{1,*}</u>

¹School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.

²Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.

³Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. ⁴PTT Public Company Limited, Bangkok, Thailand.

⁵Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand.

⁶Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

⁷London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, UK.

⁸Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK.

⁹UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, UK.

¹⁰Howard Hughes Medical Institute, Cambridge, MA, USA.

¹¹Broad Institute of MIT and Harvard, Cambridge, MA, USA.

¹²McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.

¹³Department of Biological Engineering, MIT, Cambridge, MA, USA.

¹⁴Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.

¹⁵Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

¹⁶Wellcome Sanger Institute, Hinxton, UK.

[†]These authors contributed equally to this work

*e-mail: danaya.pak@mahidol.ac.th; navin.hor@mahidol.edu; chayasith.u@vistec.ac.th

I will discuss our development of a robust multiplexed CRISPR-based detection using orthogonal CRISPR-associated enzymes to simultaneously diagnose SARS-CoV-2 infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)—including recent globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529), as well as our implementation, with approval of the FDA of Thailand, of the CRISPR-based test technology. The platform has features for point-of-care (POC) use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of the technology in low- and middle-income countries, we locally produce and formulate our own recombinase polymerase amplification reaction and demonstrate its equivalent efficiency to commercial counterparts. Our tool—CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance which can be locally manufactured—may enable sustainable use of CRISPR diagnostics technologies for infectious diseases in POC settings.